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A B S T R A C T

This study uses satellite data to detect agricultural straw burning and estimates its impact on air pollution and
health in China. We find that straw burning increases particulate matter pollution and causes people to die from
cardiorespiratory diseases. We estimate that a 10 μg/m3 increase in PM2.5 increases mortality by 3.25%. Middle-
aged and old people in rural areas are particularly sensitive to straw burning pollution. Exploratory analysis of
China’s programs to subsidize straw recycling suggests that extending these programs to all the straw burning
regions would bring about a health benefit that is an order of magnitude larger than the cost.
1. Introduction

Farmers often burn agricultural straw residues from crops such as
wheat, rice, maize, and cotton in situ after harvest. Straw burning is
particularly prevalent in developing countries that rely heavily on agri-
cultural production and is a major cause of seasonal air pollution
(Andreae and Merlet, 2001; Gadde et al., 2009; Rangel and Vogl, 2019).
However, effective regulations on straw burning are rare and the lack of
scientific evidence on how straw burning affects people’s health can
make the government reluctant to design and enforce strict regulations.
In this study, we estimate the impacts of straw burning on air pollution
and mortality using data from China and try to quantify the potential
benefits of China’s recent efforts in straw recycling.

Our analysis is based on a novel panel dataset that assembles detailed
information on straw burning, air pollution, and mortality in China.
High-resolution satellite image data are used to identify the exact loca-
tions of straw burning in China from 2013 to 2015. Straw burning data
are then linked to local air quality data collected from 1650 ground-level
monitors. Death records from a quarter of the Chinese population are
obtained from the Disease Surveillance Point system (DSPS) of China’s
Center for Disease Control and Prevention, which contains information
onnect.ust.hk (T. Liu), maigengzh

2 March 2020; Accepted 14 Ma

.

on gender, age group, and cause of death at the county level for the same
period.

With these data matched at the county level, we then estimate how
straw burning affects air pollution and mortality. Our baseline results
show that 10 additional straw fires within 50 km of a county center will
lead to a 4.79 μg/m3 (or 7.62%) increase in monthly fine particulate
matter (PM2.5, diameter < 2.5 μm) and a 1.56% increase in all-cause
mortality in Chinese counties. Using straw burning as an instrumental
variable, we further estimate that a 10 μg/m3 increase in monthly PM2.5
can lead to a 3.25% increase in mortality. Heterogeneity analyses reveal
that straw burning pollution primarily increases cardiorespiratory mor-
tality, and has a strong impact on people over 40 in rural and poor areas,
but has no statistically significant impact on younger people.

The key concern of our baseline IV estimate is that straw burning may
affect human health through channels other than air pollution. For
example, local governments may implement straw burning regulations
that are endogenous to local population health. It is also possible that
straw burning can create temporary income shocks to farmers, as the
activity is associated with harvesting. To address these issues, we adopt
two augmented IV strategies, which together lend additional credibility
to our baseline finding. In our first augmented strategy, we use non-local
ou@126.com (M. Zhou).
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1 National Bureau of Statistics: http://www.stats.gov.cn/tjsj/zxfb/201512/
t20151208_1286449.html.
2 Food and Agricultural Organization, United Nations: http://www.fa

o.org/worldfoodsituation/csdb.
3 http://www.moa.gov.cn/zwllm/zwdt/201605/t20160526_5151375.htm.
4 There is no straw burning during growing seasons.
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straw burning to instrument local air pollution (conditional on local
straw burning). Non-local straw burning is an appealing instrument for
air pollution because the burning behaviors of non-local farmers are
typically not subject to the local government’s control. In the second
strategy, we follow Rangel and Vogl (2019) and explore different wind
patterns for identification. We separate straw burning from upwind and
downwind areas and use the difference in the coefficients between up-
wind and downwind fires to isolate the pollution effect from the potential
income effect. The identification relies on the fact that upwind and
downwind straw fires have asymmetric impacts on air pollution, but have
symmetric impacts on local people’s income. In both exercises, we obtain
estimates that are quantitatively similar IV to the baseline model, sug-
gesting the endogeneity of straw burning is not a big concern in our
research context.

Based on our findings, we then evaluate China’s recent straw recy-
cling policy, launched in 2016. We find that subsidizing straw recycling
effectively improved air quality and the estimated health benefits could
outweigh the costs by an order of magnitude. Specifically, using a
Difference-in-Differences (DiD) approach, we show that the number of
straw fires in subsidized provinces dramatically declined after the policy
(by 153 a year), relative to the non-subsidized provinces, and this change
brought down the annual average PM2.5 concentration by 4.33 μg/m3.
These estimates imply that the straw recycling policy could have averted
18,900 pre-mature deaths annually in China.

We contribute to the literature in three ways. First, this paper adds to
the emerging literature on the impacts of straw burning (e.g. Graff Zivin
et al., 2019; Lai et al., 2018; Rangel and Vogl, 2019). In this thin line of
literature, Rangel and Vogl (2019) are the first to link agricultural
burning to health outcomes. Exploiting the interactions between wind
patterns and sugarcane harvest fires in Brazil, they show that
late-pregnancy exposure to upwind fires decreases birth weight, gesta-
tional length, and in-utero survival, but not early neonatal survival. Graff
Zivin et al. (2019) adopt a similar approach and find that air pollution
from agricultural fires lowers the cognitive performance of students in a
high-stakes test in China. Lai et al. (2018) investigate how agricultural
fire affects cognitive function among the Chinese people and show that
more straw burning reduces old people’s cognition and memory. Our
main contributions beyond Rangel and Vogl (2019) are that (1) we are
able to investigate the impacts of straw burning on mortality for different
age groups, which helps highlight the most vulnerable people to straw
burning pollution, and (2) we apply our estimates to assess a recent straw
recycling policy implemented by the Chinese government.

Second, we find significant rural-urban heterogeneity in the air
pollution effect. Due to data limitations, rural residents have largely been
ignored in existing air pollution studies. Notable exceptions include Zhou
et al. (2015) and Fan et al. (2020). In both studies, the authors find that
air pollution effects are larger and statistically significant in rural areas,
but small and statistically insignificant in urban areas. While our research
context is different from the previous studies, we also find that straw
burning and air pollution significantly increase the mortality of rural
residents and poor residents, but not that of urban or rich residents. These
results together suggest that better socio-economic conditions can miti-
gate the health damage of air pollution.

Finally, we show that China’s recent straw-recycling subsidy signifi-
cantly reduced straw burning activities, which provides important in-
sights into designing effective straw burning regulations. Historically, the
Chinese government relied on command-and-control regulations to
reduce straw burning. Due to the high enforcement costs, however, these
policies were not very successful. In contrast, providing subsidies to
farmers and recycling companies immediately led to less burning and
improvement in air quality. The incentive-based approach seems to
outperform the command-and-control approaches in our research
context. These findings can be referenced by other agrarian economies
with similar agricultural burning issues.

The rest of this paper is structured as follows. Section 2 introduces the
practice of straw burning in China and reviews the current literature.
2

Section 3 describes the data on straw burning, deaths, pollution and
weather, followed by an introduction on data compilation, a summary of
key variables, and descriptive analyses. Section 4 discusses our empirical
strategy. Section 5 reports the main findings. Discussions of caveats and
robustness checks follow in Section 6. Section 7 explores a variety of
heterogeneities in the health effects of straw burning pollution. Section 8
estimates the impact of the straw recycling policy and conducts an
exploratory benefit-cost analysis. Section 9 concludes.

2. Background

2.1. Agriculture and straw management in China

China has the largest straw resource in the world. With a sown area of
0.11 billion ha, China produced 0.62 billion tons of grain in 2015,1 ac-
counting for 24% of the total grain output worldwide.2 The major crops
in China are maize, rice, and wheat. Rice is mainly planted in the south,
while wheat is common in the northern and central regions. Maize is
widely planted, with its main production area in northeastern China.
Two-season planting is common in central, eastern and southern China
but is rare in northern regions, which are colder and have a longer
winter. As a result, straw production also varies over time and space.

China produces the largest amount of agricultural straw residues in
the world. In 2012, nearly one billion tons of straw were produced,
contributing to 18.5% of the global straw production. Straw consists of
crop stubble and stalks. Crop stubble is usually left on the farmland after
harvest and then burnt in situ. Stalks are longer and can be collected after
being cut, but a large portion of them remain unrecycled (Shi et al.,
2014). According to China’s Ministry of Agriculture, 320 million tons of
straw were not utilized in 2015, accounting for about 31% of the total
straw produced nationwide.3

The straw burning seasons in China are from late May to late July and
from late September to late November each year.4 Farmers burn straw for
several reasons. First, they need to clear their fields for the next round of
cultivation, but straw does not decompose quickly. Second, fires kill
pests, weeds, fungi and bacteria that can be harmful to new crops. Third,
the ashes can fertilize the farmland. Finally, alternative measures (such as
straw returning and straw recycling) require additional labor work that is
not economically rewarding.

There are two primary ways of straw utilization: straw returning and
straw recycling, both of which are time-consuming and labor-intensive.
Straw returning, or soil incorporation, means to cut straw into smaller
pieces and put them back into the farmland as fertilizer. However, the
small pieces can make plowing inconvenient. Because the decomposition
process takes time, straw returning often hinders crop growth in the short
run. Straw recycling means re-using straw for other purposes, such as
industrial materials, fuel and animal feed. Because each household owns
only a small piece of farmland, the economy of scale of straw recycling
cannot be easily realized. Burning straw after harvest thus is a common
practice in China.
2.2. Straw burning and air pollution

Pollution from straw burning is a typical example of a negative ex-
ternality. It originates from rural farms and can travel to distant regions.
The impact of straw burning on air pollution has been discussed exten-
sively in the science community, with a focus on measuring pollutant
emissions, numerically modeling the transmission of emissions, and

http://www.stats.gov.cn/tjsj/zxfb/201512/t20151208_1286449.html
http://www.stats.gov.cn/tjsj/zxfb/201512/t20151208_1286449.html
http://www.fao.org/worldfoodsituation/csdb
http://www.fao.org/worldfoodsituation/csdb
http://www.moa.gov.cn/zwllm/zwdt/201605/t20160526_5151375.htm
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analyzing the physicochemical reactions of air pollutants (see Chen et al.,
2017 for a recent review).

The substances emitted from straw burning include particulate matter
(PM), volatile organic compounds, carbon dioxide, and other compounds
known to be toxic (Andreae and Merlet, 2001). Straw burning emits a
large amount of PM, which is dominated by submicron and fine particles.
According to Zhang et al. (2016), the annual PM2.5 emissions from open
straw burning are about 1.036 million tons, accounting for 7.8% of total
anthropogenic emissions of PM in China. In eastern China, straw burning
emissions could contribute up to 56% of total emissions in the summer.

Straw burning emits little SO2 and NOx, which are common pollutants
from other sources such as fossil fuels (Streets and Waldhoff, 2000).
While straw burning also generates small amounts of CO and secondary
O3, these pollutants are generally less stable and persistent in the air than
PM, and therefore straw burning is not considered a major contributor to
these pollutants.5 Weather conditions, such as temperature and humid-
ity, can also affect the smoke’s composition and the generation of other
secondary pollutants.

PM emissions from straw burning can travel long distances, and
critics sometimes blame straw burning for the large-scale and widespread
haze episodes in China.6 However, there is a lack of research that
quantifies the impacts of straw burning on air quality at the national
scale. Existing scientific studies that use numerical modeling to quantify
the impacts of straw burning on air pollution tend to be applicable only to
specific areas within a short period of time, in part due to the huge un-
certainties in the emission inventories and the complex interactions be-
tween straw burning emissions and meteorological factors (Chen et al.,
2017).

2.3. Air pollution, health, and straw burning regulations

A large number of economic studies have documented that air
pollution can significantly damage human health, in both developed
countries (e.g. Arceo et al., 2016; Chay and Greenstone, 2003; Currie and
Neidell, 2005; Currie et al., 2014; Schlenker and Walker, 2015) and
developing countries (e.g. Chen et al., 2013; Ebenstein et al., 2017; Fan
et al., 2020; He et al., 2016). To identify the causal impact, previous
studies typically focused on policies that directly affect air pollution
levels (such as the Clean Air Act in the U.S.) or explore the sources of air
pollution (such as cars, airplanes, and wildfires).

Until very recently, economists did not investigate pollution caused
by straw burning. There are at least two empirical challenges. First,
credible data on agricultural fires are not readily available. Second,
isolating the pollution effect of straw burning can be challenging, as
straw burning can be associated with local economic activities that may
affect human health. Rangel and Vogl (2019) are the first to look into this
issue; they utilize satellite data to overcome the data barrier and explore
wind patterns to pin down the air pollution effect.7 Given that almost all
the developing countries and many developed countries are subject to
such seasonal air pollution threats, there is a great need for additional
evidence on how straw burning affects human health in a broader context
and on how to design effective policies to control agricultural fires.
5 Existing evidence shows that the amount of CO generated by incomplete
combustion during open straw burning is low (Zhang et al., 2013) and that the
association between biomass burning and O3 is also weak (Jaffe et al., 2013;
Rangel and Vogl, 2019). O3 in the troposphere is mainly contributed by vehicle
and industrial processes, and the formation of O3 is complex, depending on
nonlinear interactions with temperature, solar radiation and other precursors.
6 For example, Xinhua News: http://news.xinhuanet.com/politics/2015-10/

20/c_1116884784.htm.
7 Several associational studies in the public health literature also investigated

the relationship between straw burning and health (e.g. Jacobs et al., 1997).
Due to lack of convincing identification strategies, estimates from these studies
can be biased (see Dominici et al., 2014) and we therefore do not discuss the
details of these studies.
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Conceptually, agricultural fires share a lot of similarities to wildfires.
While little research can be found on agricultural fires, multiple studies
have assessed the impacts of wildfires. For example, Jayachandran
(2009) examines the effect of smoke (measured by aerosol from satel-
lites) on early-life mortality during a big forest fire in Indonesia in 1997
and finds that the fire significantly worsened infant health in poor areas.
Sheldon and Sankaran (2017) show that Indonesia’s wildfire affected
Singapore’s air pollution and increased hospital admissions. Miller et al.
(2017) use smoke plumes to identify pollution from wildfires in the U.S.
and show that wildfires could affect PM concentrations and impair the
health of the elderly in regions where background levels of air pollution
are low. Other studies have shown that wildfires also have impacts on
labor supply, housing prices, hospitalization and defensive (avoiding)
expenditures (e.g. De Mendonça et al., 2004; Donovan et al., 2007;
Moeltner et al., 2013; Richardson et al., 2012).

Unlike natural wildfires, however, agricultural fires are mostly
anthropogenic. They occur more frequently than wildfires and spread
across many countries and regions. Because a large proportion of the
world’s population still live in agricultural regions, the aggregate impact
of straw burning can be orders of magnitude larger than that of wildfires.
Therefore, estimating the impact of agricultural fires and identifying
effective ways to control straw burning are of great policy relevance and
urgency.

In the past two decades, the Chinese government tried a variety of
policy instruments to control straw burning activities. The government
historically relied on command-and-control regulations, and straw
burning was officially banned in the 1990s. Some local governments
required village leaders to patrol and do surveillance; some educated
farmers through propaganda; and some applied administrative sanctions
to local village leaders (such as dismissal or suspension) if villagers were
found burning straw. Unfortunately, most of these regulations were too
difficult and costly to implement. The reality is that rural households
continued to burn straw regardless of various bans. For example, in our
data, the number of straw fires actually increased significantly from 2012
to 2015.

Seeing that the command-and-control regulations were ineffective,
starting in 2016, the central government turned to an incentive-based
policy that provides subsidies to farmers and enterprises for straw recy-
cling. As will be elaborated later in this paper, this subsidy seems effec-
tive and has significantly reduced straw burning.

3. Data

3.1. Straw burning data

Straw burning can be detected by remote sensing from satellites. In
China, the Satellite Environment Center of the Ministry of Ecology and
Environment (MEE) collects daily straw burning data from the moderate
resolution imaging spectroradiometers (MODIS) of NASA’s Satellites
TERRA and AQUA. These satellites overpass China twice a day in the
daytime (around 10:30 and 13:30 local time) and twice each night
(around 22:30 and 1:30 local time) and report all fire pixels detected with
250, 500, or 1,000 m resolution (Kaufman et al., 1998). A fire point is
identified when a thermal anomaly is detected within a pixel using a
contextual algorithm that exploits the mid-infrared radiation from fires
(Justice et al., 2002). Therefore, the burnt area can be much smaller than
the satellite resolution. MODIS routinely detects both flaming and
smoldering fires and the minimum area reported is about 50 square
meters under good weather conditions. A large fire can be recorded as
multiple fire points or pixels. Estimation of the burnt area is not recom-
mended due to large uncertainties in modeling.8

The MEE checks the MODIS fire data and distinguishes straw burning
from other types of fires (such as wildfires) based on geographical
8 For details, see https://earthdata.nasa.gov/firms-faq.

http://news.xinhuanet.com/politics/2015-10/20/c_1116884784.htm
http://news.xinhuanet.com/politics/2015-10/20/c_1116884784.htm
https://earthdata.nasa.gov/firms-faq


11 The air pollution levels are higher during the winter because China’s winter
heating system burns large amounts of coal. Given the relative low PM con-
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information and land use. The measure of straw burning is consistent and
comparable over time and across regions. Straw is burnt after harvesting
and before planting. As China has two planting seasons, we also observe
two burning seasons, one in summer and the other in late autumn and
early winter.

One limitation of the satellite data is that it does not distinguish large
straw fires from smaller ones. However, because each household is only
allowed to lease a small piece of land in China, we believe the size of each
straw fire is similar in size, especially within the same county.9 Another
limitation is that satellites capture this data only when they pass over the
continent. Since straw burning may occur during non-overpassing pe-
riods and die out without thermal anomalies when satellites pass, the
number of actually fires can be under-estimated. Thus, the precise
interpretation of our regressions is that they estimate the effects of straw
burning detected by satellite on air pollution and mortality.

3.2. Death data

Death data were collected from the Disease Surveillance Point System
(DSPS) of the Chinese Center for Disease Control and Prevention (CDC).
The DSPS was launched in the 1990s and collects the most comprehen-
sive information on deaths in China. From 1991 to 2000, data were
collected at 145 representative locations nationwide. From 2003, the
system was expanded to cover 161 urban districts and rural counties. The
DSPS was scaled up again in 2013 to cover 605 counties (283 rural
counties and 322 urban districts) with a population of 0.34 billion,
encompassing roughly a quarter of China’s total population, making it
highly representative for the whole country.10

In each DSP location, the local CDC is required to record and verify all
deaths that occurred in hospitals or at home. Each death is registered in
DSPS following a standard protocol. The death certificate contains
detailed information on gender, age, and cause of death, allowing us to
construct location-, gender-, and age-group specific cause-of-death mor-
tality rates. The DSPS collects death records only for local residents,
defined as those who have lived in a DSP location for at least 6 months in
the past year.

In this study, we have access to all the death records (5 million) from
2013 to 2015. We use the logarithm of the number of deaths as the main
dependent variable. Age-adjusted mortality rate (number of deaths per
100 thousand people) is also used as a robustness check. Since the pop-
ulation structure change is negligible during our sample period, the two
measures yield similar estimates. Each cause of death is categorized as
either cardiorespiratory or non-cardiorespiratory. Cardiorespiratory
diseases include cardiac complaints, conventional respiratory diseases,
cerebrovascular dysfunction (mostly stroke), tracheal and bronchial in-
fections, and lung cancers. Other causes are grouped as non-
cardiorespiratory. We expect that straw burning pollution has a larger
impact on cardiorespiratory mortality than on non-cardiorespiratory
mortality.

3.3. Pollution and weather data

Daily air quality data were collected from the records of 1650 local
monitoring stations and were averaged by month. Concentrations of fine
particulate matter (PM2.5) were the key variable of interest, but data on
PM10, SO2 and NO2 were also collected.

Previous studies show that China’s air quality data were sometimes
manipulated because the central government attached high political
9 For example, the average area of farmland leased per agricultural household
is 5 mu or 0.0033 km2 in China in 2015, which is smaller than the size of a fire
pixel but is larger than the fire area that can be detected. Source: http://opinion.
people.com.cn/n1/2017/0605/c1003-29316482.html.
10 More details about the DSPS can be found in He et al. (2016) and Ebenstein
et al. (2017).
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stakes to local air quality (e.g., Ghanem and Zhang, 2014). However, this
concern has been significantly alleviated in recent years because the
Chinese government upgraded the air quality monitoring system to
measure finer pollutants (such as PM2.5) and at the same time automated
the sampling and reporting process in 2013. Greenstone et al. (2019)
show that the new monitoring system makes it very difficult to manip-
ulate the air pollution data, which has significantly improved the data
quality. In addition, we focus on burning in the summer season, during
which the PM concentrations are relatively low.11 Local officials have
little incentives to manipulate such data, because the political assessment
targets primarily the number of severely polluted days.

Daily weather conditions, including wind speed, wind direction,
relative humidity, precipitation, and temperature, were collected from
403 meteorological stations. We then average them by month and match
themwith the DSP data. Wind can carry pollutants to other areas but also
can disperse them. Strong wind helps fires spread. Higher humidity
might discourage fires and result in less complete combustion. Rainfall
and temperature may also affect farmers’ burning decisions. We thus
include all of them as control variables.
3.4. Data matching and summary statistics

We aggregate all the datasets to the monthly level for subsequent
analysis, for three reasons. First, aggregating data to the monthly level
creates more variation in the number of straw fires for each county.12

Second, using monthly data can better capture the cumulative effect of
air pollution in the medium run. As shown by many epidemiological
studies and a few recent economic studies, the impact of air pollution
tends to accumulate over time.13 The reason is that prolonged exposure
to air pollution can cause more complex cardiorespiratory diseases and
increase the size of the affected population. Using daily data may
significantly under-estimate the air pollution effect. In a robustness
check, we also use the distributed lag models with up to 7-day lags of
straw burning as independent variables to instrument PM2.5 and find that
the estimates are indeed smaller than the monthly estimates (Appendix
Table A1). Third, a known issue when running regressions using daily
data with many lagged dependent variables is that the estimated co-
efficients can be noisy and tend to oscillate. This is because air pollution
levels are highly correlated in consecutive days, making it difficult to
interpret specific coefficients (see Barwick et al., 2018). Further incor-
porating the instrumental variables in such models is even more chal-
lenging both technically and computationally.

We then merged different datasets into one panel at the county-
month-year level from May 20 to July 20 each year from 2013 to
2015, during which straw burning data are monitored and verified by the
MEE. The DSPS counties were first matched with the locations where air
quality data were collected. If a county had no monitoring station within
50 km of its center, that county was dropped from our analysis. If a
county had multiple monitoring stations within that range, the average
concentrations across all of the stations were used. Counties for which no
PM2.5 data were reported for more than a year were also dropped. The
centrations in summer, we may capture the health impact of PM at the lower
tail.
12 At the monthly level, the average number of straw fires in a county is about
2. For the daily data, we see a large number of zeros even during the burning
seasons.
13 See, for example, Barwick et al. (2018), Cheung et al. (forthcoming), Costa
et al. (2017), Deryugina et al. (2019), Schwartz (2000), Zanobetti et al. (2002);
Zanobetti and Schwartz (2008), Zeger et al. (1999).

http://opinion.people.com.cn/n1/2017/0605/c1003-29316482.html
http://opinion.people.com.cn/n1/2017/0605/c1003-29316482.html


G. He et al. Journal of Development Economics 145 (2020) 102468
weather data were matched with the DSPS data in a similar way. The
total number of straw fires observed within 50 km of the geographic
center of each county was then tabulated by month.14 The average area
of a Chinese county is 3363 km2, covered by a radius of around 33 km.
We choose 50 km as the main specification and explore other distances
from 35 km to 100 km as robustness checks. The final balanced panel
covered 107 urban districts and 102 rural counties, with at least one
pollution monitoring site within 50 km from each county’s center. In
total, 390 out of the 605 DSPS counties were dropped due to lack of data
on PM2.5.

Table 1 reports descriptive statistics of the key variables, including
the number of straw fires, air pollution concentrations, and the number of
deaths. There were 2540 straw fires detected by the satellites during the
period studied, an average of two fires within 50 km of each county’s
center. Straw fires were equally distributed along different wind di-
rections, suggesting that wind patterns are largely random during the
burning seasons. Both urban districts and rural counties had straw
burning detected. The number of staw fires was lower in the urban dis-
tricts. This is reasonable because the sown area is smaller in urban dis-
tricts than in rural counties.

Panel B of Table 1 reports the summary statistics for air pollution and
visibility (i.e., impaired visibility due to air pollution). The average PM2.5
concentration during summer burning seasons was around 49 μg/m3,
which is significantly lower than other seasons. Rural counties have
slightly higher PM2.5 concentrations than urban districts during the
summer burning seasons. We also observe rural SO2 concentration is
higher, likely because rural households burn more coal for cooking and
heating than do urban households.

Panel C of Table 1 further summarizes the number of deaths by cause,
age and gender. Around two-thirds of the total deaths are caused by
cardiorespiratory diseases, and there are more deaths in rural areas
compared with urban areas. Nearly 80% of the deaths are among people
above 60 years old, and males account for around 58%. In addition,
China has a relatively low infant mortality rate among countries at a
similar development stage.15

The spatial distribution of straw burning and air quality is shown in
Fig. 1. Panel A shows that most of the straw fires took place in Henan,
Hebei, Shandong, Jiangsu and Anhui provinces in central China. Panel B
shows the average PM2.5 concentrations during the summer burning
season in 2013–2015. We can observe a strong positive correlation be-
tween the number of straw fires and air pollution. In counties with more
straw fires, PM2.5 concentrations were higher.

4. Empirical strategy

4.1. Baseline model

We start by estimating the impact of straw burning on air quality
using a fixed-effects model:

PMit ¼ β0 þ β1burningit þ Xitθ þ τi þ πt þ ξit (1)

where PMit denotes the PM2.5 concentration in county i in month t;
burningit is the total number of straw fires detected within 50 km of the
center of county i in month t. Xit is a vector of weather variables: wind
speed, wind direction, temperature, precipitation, and relative
14 We use the geographic centers rather than administrative centers to calcu-
late the number of straw fires. This is because straw fires take place in the
farmlands and our results are primarily driven by rural areas. In rural areas, the
majority of the population lives in the villages, which are far from the admin-
istrative center.
15 See https://data.unicef.org/for more details.
16 We follow Grange (2014) and measure monthly wind directions based on
daily wind directions and speed using the vector decomposition method. See
Grange (2014) for more details.
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humidity.16 τi are county fixed effects, and πt are year and month fixed
effects. ξit are errors. The county fixed effects control for time-invariant
confounders specific to a county, such as its natural endowments, crop
patterns and straw-burning culture. The year and month fixed effects
further account for shocks common to all counties in a particular year or
month. Standard errors are two-way clustered at county and month level
to account for autocorrelations along these two dimensions.

We then estimate the impact of straw burning on health in a similar
way:

Healthit ¼α0 þ α1burningit þ Xitϑþ τi þ πt þ εit (2)

where Healthit denotes the logarithm of the monthly number of deaths in
county i in month t.

Equations (1) and (2) also provide the basis for estimating the impact
of PM2.5 on health. We focus on PM because we find that SO2 and NO2
were not significantly related to straw burning (see Appendix Table A2),
which is consistent with the previous scientific evidence. PM can provoke
pulmonary inflammatory response, alter cardiac autonomic function, and
accelerate chronic obstructive pulmonary disease. We focus on PM2.5
rather than PM10 because existing epidemiological evidence suggests
that smaller particles pose a greater threat to human health than do larger
ones (e.g., Zanobetti and Schwartz, 2009). PM2.5 can penetrate deeper
into the lungs and enter the bloodstream due to its small size, and can be
quickly absorbed and create direct damage to the circulatory system
(e.g., Godleski et al., 2000).

Specifically, the number of straw fires can be treated as the instru-
mental variable (IV) for PM2.5, and Equation (1) can serve as the first
stage. The second stage estimation uses the following equation:

Healthit ¼ γ0 þ γ1dPMit þ Xitρþ τi þ πt þ μit (3)

where dPMit is the predicted PM2.5 concentrations from Equation (1).
County fixed effects, year and month fixed effects, and weather condi-
tions are all included as controls in both stages of IV.
4.2. Validity of the instrumental variable

In the baseline model, we control for county fixed effects, month and
year fixed effects, and local weather conditions. Intuitively, the impact of
straw burning is identified by changes in the number of straw fires within
the same location across different harvesting seasons, holding weather
conditions constant. At this level, whether we can treat straw burning
variations as exogenous is debatable. Below, we discuss several possi-
bilities that may invalidate the instrument, and provide solutions to each.

The first concern is that farmers’ burning decisions may depend on air
pollution levels. For example, is it possible that they reduce/increase
straw burning activities if they observe high pollution? We believe this is
highly unlikely. During our field trips, we interviewed farmers about
their straw burning behaviors and very few of them acknowledged that
burning straw is a major contribution to air pollution. In fact, farmers
repeatedly stated that they had the right to burn straw and that such
activities should not be regulated. This is also documented by multiple
news articles.17 In addition, in Appendix Table A3, we investigate
whether pollution on the previous day affects current-day straw burning
(¼1 if there is at least one straw burning point) and find no statistically
significant associations.

The second concern, which is more likely, is that straw burning can be
affected by regulations that are endogenous to local pollution and health
17 For example, Xinhua News report that farmers believe straw burning is not a
major contribution to regional air quality compared with industrial and vehicle
emissions, and they think it is unfair to prohibit straw burning to improve urban
air quality. For example: http://www.xinhuanet.com/energy/2015-10/22/
c_1116898554.htm.

https://data.unicef.org/
http://www.xinhuanet.com/energy/2015-10/22/c_1116898554.htm
http://www.xinhuanet.com/energy/2015-10/22/c_1116898554.htm


Table 1
Summary statistics during summer burning in 2013–2015.

VARIABLES Obs. Mean S.D. Min Max Urban Rural

(1) (2) (3) (4) (5) (6) (7)

Panel A: # of Straw Fires Obs. 972 963
Total 1935 2.0 7.8 0 235 1.6 2.4
Local 1935 0.3 2.4 0 94 0.1 0.4
Non-local 1935 1.8 6.0 0 141 1.5 2.0
Upwind 1935 0.5 1.7 0 36 0.4 0.5
Downwind 1935 0.5 2.2 0 47 0.4 0.6
Vertical 1935 1.0 4.6 0 154 0.8 1.3

Panel B: Air Pollution
PM2.5 (μg/m3) 1595 49.2 24.2 5.6 133.5 47.9 50.7
PM10 (μg/m3) 1601 87.6 44.6 12.8 314.1 82.6 92.9
SO2 (ppb) 1641 8.7 6.7 0.6 83.9 8.0 9.5
NO2 (ppb) 1635 16.1 7.5 1.6 61.7 17.2 14.9
Visibility (km) 1935 14.2 6.1 1.6 30.0 14.7 13.7

Panel C: Number of Deaths (Monthly)
Cause
All causes 1935 189 141 5 1244 177 201
Cardiorespiratory 1935 114 87 1 812 107 120
Non-cardiorespiratory 1935 54 43 0 338 48 60

Age
0 1935 1.4 1.9 0 20 1.3 1.4
1–4 1935 0.6 1.0 0 10 0.5 0.7
5–19 1935 1.3 1.7 0 16 1.0 1.5
20–39 1935 2.2 2.4 0 18 1.9 2.5
40–59 1935 31.0 23.5 1 189 28.7 33.2
60þ 1935 149.2 114.4 5 1003 140.7 157.8

Gender
Male 1935 109 81 3 734 102 117
Female 1935 80 62 2 601 76 84

Notes: Summary statistics of monthly straw burning, air pollution and number of deaths in 209 DSP counties are reported, including mean, standard deviation, minimum
and maximum values. The summer burning period includes May.20th-July.20th in 2013–2015.
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status. For example, governments that have strong incentives to improve
local ambient air quality may also have strong incentives to provide
better health care. If these efforts were correlated, we would overstate
the impact of straw burning on population health. To address this pos-
sibility, we use non-local straw burning as the instrumental variable and
estimate how burning outside a county’s boundary affects its air pollu-
tion and health. Because the county government can only regulate straw
burning within its jurisdiction, neighborhood counties’ straw burning
creates more exogenous variations in local air quality. To take into ac-
count the possibility that straw burning shocks to the economy may be
spatially correlated, we control for the number of local straw fires when
using the number of non-local straw fires as an instrument. As will be
discussed in the next section, using non-local burning as the instrument
generates almost identical estimates.

The third concern is that straw burning may be associated with
temporary income shocks that also affect human health. For example,
straw burning often takes place after harvesting, and harvesting can
create positive income shocks to farmers. Were such temporary income
increases important for health, we might under-estimate the air pollution
effect.

We try to address this concern in two ways. First, income shocks
should not affect different diseases in a way that coincides with the air
pollution effect. Existing literature documents that air pollution primarily
affects cardiorespiratory diseases and does not affect non-
cardiorespiratory diseases, while the income effect does not follow this
pattern. We analyze different causes of death and find that straw burning
indeed only increases cardiorespiratory mortality, implying the air
pollution effect is the channel. Second, we follow Rangel and Vogl (2019)
and leverage wind directions to shut down the income channel, if there is
any. Specifically, we define an upwind straw fire as being located within
45 degrees of the daily prevailing wind (fixed octants) calculated from a
wind rose in Fig. 2. Straw fires in the opposite direction are defined as
downwind ones. Presumably, upwind and downwind straw fires will
contribute equally to any temporary income shocks (or any other
6

economic shocks related to straw burning), but upwind straw fires would
create a larger air pollution impact than downwind ones.

The idea can be formalized by the following model. First, health is
determined by air pollution and income levels:

Healthit ¼ δ0 þ δ1PMit þ δ2Incomeit þ Xitθ þ τi þ πt þ ξit (4)

where both PMit and Incomeit are endogenous. We can observe air
pollution but not income and our interest is to identify the impact of air
pollution (δ1) in this model.

Some straw fires occur upwind of the county center, and some occur
downwind. We can separate the number of upwind straw fires (Upwindit)
from downwind straw fires (Downwindit) and estimate how they affect
pollution and income:

PMit ¼ β0 þ β1Upwindit þ β2Downwindit þ Xitθ þ τi þ πt þ uit (5)

Incomeit ¼ α0 þ αUpwindit þ αDownwindit þ Xitθ þ τi þ πt þ vit (6)

In Equation (5), upwind straw fires and downwind straw fires affect
air pollution asymmetrically. We expect upwind fires to have a larger
impact on local air pollution than downwind ones, i.e. β1 > β2. In
contrast, in Equation (6), upwind and downwind fires have the same
impact on income, i.e., the coefficient of Upwindit is the same as the co-
efficient of Downwindit . This is the key assumption of the model and we
think it is a reasonable assumption because the impact of straw burning
on income should not depend on wind direction.

Our data also allow us to estimate the following (reduced-form)
equation:

Healthit ¼ γ0 þ γ1Upwindit þ γ2Downwindit þ Xitθ þ τi þ πt þ wit (7)

Because we do not have data on transitory income (unobservable to
researchers), we cannot estimate Equations (4) and (6). However, the
following four coefficients can be estimated from the data: γ1, γ2, β1, and
β2.



Fig. 1. Satellite Detected Straw Burning and PM2.5 in Summer During 2013–2015. Notes: Colored polygons represent DSP (Disease Surveillance Point) cities used in
the paper. Gray and white areas denote non-DSP cities. DSP counties are too small to see on the maps and thus are not plotted.
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Based on Equations (4)–(7), we can derive the following Wald-type
estimate:

δ1 ¼ðγ1 � γ2Þ = ðβ1 � β2Þ (8)

In other words, we can isolate the impact of air pollution on health
using the four coefficients estimated from Equations (5) and (7). The
estimation process proceeds as follows: (1) we first construct the number
7

of upwind and downwind straw fires within 50 km of a county in a
month; (2) we then estimate how upwind and downwind straw fires

affect air pollution using Equation (5) and obtain bβ1, and bβ2; then esti-
mate how upwind and downwind straw fires affect mortality using
Equation (7) and obtain bγ1 and bγ2; (3) and finally calculate bδ1 using
Equation (8).

The final concern is that people may migrate to avoid air pollution



Fig. 2. Illustration of Straw Fires and Wind Direction. Notes: Each red dot represents a straw fire. The dark gray area includes upwind fires, the light gray area includes
downwind fires, and the white area includes other (vertical) fires. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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exposure, which will cause potential misclassification of death counts in
different areas.18 However, we believe this concern can be significantly
alleviated in our setting for four reasons. First, China’s household
registration system, i.e., Hukou, imposes significant costs for people to
migrate both across different cities and between rural and urban areas
within a city. Second, we focus on monthly variations in air pollution and
mortality and control for time fixed effects in all regressions. Our findings
will only be affected if people migrate in response to the number of straw
fires month by month. This seems highly unlikely because the cost of
frequent migration can be very high. Third, as mentioned, the DSP sys-
tem collects death records only for local residents, those who have lived
in a DSP location for at least 6 months in the past year. The death records
for frequent migrants, if any, would not be recorded by the system.
Finally and most importantly, as shown in Section 6.2, we find little
evidence that individuals take avoidance behaviors against straw
burning pollution in the summer, when the average PM2.5 concentration
is relatively low.

5. Baseline results

5.1. Straw burning and air pollution

Table 2 summarizes the regression results from Equation (1). We use
PM2.5 concentrations as the outcome variable (the results using the log-
arithm of PM2.5 and other pollutants as the outcome variables are listed
in Appendix Table A2). In Column (1), only the county fixed effects are
included. Column (2) further controls for year and month fixed effects.
Column (3) includes county, year and month fixed effects, as well as a set
of weather controls. We cluster the standard errors at the county and
month level (two-way clustering). Alternative ways of computing the
18 We thank a referee for bringing up this issue.
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standard errors, such as clustering at the county level only, do not affect
the significance level.

Columns (1)–(3) show that 10 additional straw fires detected by
satellite are associated with a 4.4–5.0 μg/m3 increase in monthly PM2.5
concentrations. In Column (4), we also include lagged number of straw
fires in the regression. We find that previous month’s straw fires do not
affect current month’s air pollution. This finding also helps rule out any
lagged effects of straw burning on pollution at the monthly level.

Columns (5)–(6) compare the effects of straw burning on PM2.5 in
urban districts and rural counties. We find the impacts are similar in size.
This is likely because all the locations in our sample (include the rural
counties) are close to major cities where air quality information is
available.

The F-statistics from Cragg-Donald (1993) tests for weak instruments
show that straw burning is a strong instrument for PM2.5. Note that
adding year fixed effects, month fixed effects, and weather controls has
negligible impact on the point estimate of the straw burning effect. This is
encouraging, as it indicates that changes in straw burning are not
correlated with these fixed effects and weather conditions.
5.2. Straw burning and death

In Panel A of Table 3, we report the relationship between straw
burning and death. We focus on three measures: the logarithms of the
total number of deaths in a month, cardiorespiratory deaths, and non-
cardiorespiratory deaths.

After controlling for the county, month and year fixed effects and
weather conditions, we find that a 10-point increase in the number of
straw fires predicts a 1.56% increase in monthly deaths from all causes
and a 1.82% increase in cardiorespiratory deaths. Both estimates are
statistically significant. Straw burning has no significant impact on non-
cardiorespiratory deaths. This finding is consistent with previous ones
(e.g., Ebenstein et al., 2017; He et al., 2016) and suggests that air



Table 2
Effects of monthly straw burning on PM2.5 concentrations in summer.

PM2.5 (μg/m3) Urban Rural

(1) (2) (3) (4) (5) (6)

(per 10 points)
Straw Burning

4.43***
(1.48)
[0.80]

5.03***
(0.93)
[0.72]

4.79***
(0.82)
[0.68]

4.61***
(0.77)
[0.83]

5.84***
(0.56)
[1.06]

3.76***
(1.21)
[0.89]

L1. Burning �0.83
(1.17)
[0.99]

Observations 1595 1595 1538 1538 806 732
F-statistics 6.0 417.6 16.2 20.2 28.0 11.2
R-squared 0.69 0.76 0.77 0.77 0.76 0.78
# Counties 215 215 209 209 107 102
County FE Y Y Y Y Y Y
Year FE Y Y Y Y Y
Month FE Y Y Y Y Y
Weather Y Y Y Y

Notes: Each column represents a separate regression. Columns (1)–(4) report the effects of 10 additional straw fires on monthly PM2.5 concentrations. Columns (5)–(6)
estimate the effects separately for urban districts and rural counties. Weather variables include wind speed, wind direction, precipitation, temperature, and relative
humidity. Cragg-Donald F-statistics are reported. Standard errors in parentheses are two-way clustered at county and month level. Standard errors in brackets are
clustered at county level. ***p < 0.01, **p < 0.05, *p < 0.1.

Table 3
Effects of straw burning and pollution on log # of death.

All-Cause Cardiorespiratory Non-
Cardiorespiratory

(1) (2) (3) (4) (5) (6)

Panel A. The Impact of Straw Burning (Reduced-Form Estimates)
Straw Burning

(per 10 points)
1.79**
(0.92)

1.56**
(0.80)

2.11**
(0.98)

1.82**
(0.81)

�0.72
(0.86)

�0.58
(0.96)

Panel B. PM2.5 and Deaths (IV Estimates)
PM2.5

(per 10 μg/m3)
3.56***
(1.38)

3.25**
(1.43)

4.19***
(1.45)

3.80***
(1.48)

�1.43
(1.78)

�1.21
(2.10)

Panel C. PM2.5 and Deaths (OLS Estimates)
PM2.5

(per 10 μg/m3)
0.13
(0.26)

0.32
(0.23)

0.29
(0.43)

0.47
(0.38)

�0.46
(0.35)

�0.25
(0.47)

Observations 1595 1538 1595 1538 1595 1538
# Counties 215 209 215 209 215 209
Fixed Effects Y Y Y Y Y Y
Weather Y Y Y

Notes: Each column represents a separate regression. The reduced-form esti-
mates, IV estimates, and OLS estimates are reported in Panels A, B, and C,
respectively. Columns (1)–(2) examine the effects of pollution on percentage
change in monthly all-cause mortality. Columns (3)–(4) and Columns (5)–(6)
examine the effects on cardiorespiratory and non-cardiorespiratory mortality,
respectively. Weather variables include wind speed, wind direction, precipita-
tion, temperature, and relative humidity. Standard errors in parentheses are two-
way clustered at county and month level. ***p < 0.01, **p < 0.05, *p < 0.1.
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pollution is likely to be the causal factor for the excess mortality.
19 For example, Shang et al. (2013) reviewed 33 studies in China and found
that a 10 μg/m3 increase in PM2.5 increases total, respiratory, and cardiovascular
mortality by 0.38%, 0.51%, and 0.44%, respectively. Zhou et al. (2015) have
provided the only rural estimates of the impacts of outdoor air pollution,
showing that each 10 μg/m3 increase in PM2.5 was associated with a 1.2% and a
0.55% increase in mortality risk in two Chinese counties.
5.3. IV estimates on the impacts of PM2.5 on deaths

We estimate the impact of fine particulate matter on monthly deaths
using straw burning as the instrumental variable for air pollution. The
results are reported in Panel B of Table 3. We find that a 10 μg/m3 in-
crease in PM2.5 concentrations will lead to a 3.25% increase in all-cause
deaths; again, the size of the coefficient is robust to the inclusion of
weather conditions. Similarly, the mortality effect is driven primarily by
cardiovascular and respiratory diseases, suggesting that air pollution is
likely to be a causal factor.

For comparison, we also report the association between PM2.5 and
deaths, in Panel C of Table 3. We see that none of the coefficients is
statistically significant at the conventional level. In addition, the OLS
estimates are also substantially smaller than the IV estimates, suggesting
that OLS estimates are downward biased.
9

The estimated coefficients using the IV approach were larger than
associational estimates provided by public health and epidemiological
studies in both developed and developing countries (e.g., Dockery et al.,
1993; Samoli et al., 2008; Shang et al., 2013; Yin et al., 2017; Zanobetti
and Schwartz, 2009; Zhou et al., 2015).19 Our IV estimates are, however,
quantitatively close to those of several recent studies using
quasi-experimental approaches to estimate the health impacts of air
pollution (e.g., Chen et al., 2013; Ebenstein et al., 2017; Fan et al., 2020;
He et al., 2016). These results confirm that associational estimates can
significantly under-estimate the air pollution effect.

6. Threats to baseline findings

In this section, we discuss multiple threats to our baseline IV results.
We first estimate the health impact of air pollution using augmented
instruments and compare them with the baseline results. Our analyses
show that, while the simple IV (number of straw fires within 50 km of a
county) is conceptually less appealing than the improved instruments,
the estimates from the simple IV are quantitatively similar to the esti-
mates from the improved instruments. In other words, the improved
instruments do not really add much to our understanding of the straw
burning impact. Second, we discuss how avoidance behaviors will affect
our findings. In one exercise, we include the visibility variable in the
model and do not find it having any impact. In another exercise, we
examine how people search online for air filters and face masks and find
that people do not respond to air pollution information during the
summer. Our conclusion is that avoidance behavior is not a serious
concern in our research context. Finally, we conduct a rich set of
robustness checks and show that our findings are not affected by some
decisions we make in the empirical analyses.

6.1. Results from augmented IVs

We report the regression results from the improved instruments in
Tables 4 and 5. In Table 4, we use non-local straw burning as the
instrumental variable for local air pollution, conditional on local burning.
We report the first stage, reduced-form, and the IV estimates. We find



Table 4
Leverage non-local straw burning to estimate the impact of pollution on death.

First Stage
(Y¼PM2.5)

Reduced-Form
Estimates (Y ¼
Log # of Deaths)

IV Estimates (Y
¼ Log # of
Deaths)

(1) (2) (3) (4) (5) (6)

Panel A. First-Stage and Reduced-Form Estimates
Non-local
Burning

(per 10 points)

5.13***
(0.99)

4.96***
(0.84)

1.92*
(1.01)

1.62*
(0.89)

Local Burning
(per 10 points)

3.94*
(2.24)

2.91
(1.99)

0.01
(2.15)

0.47
(2.17)

Panel B. IV Estimates
PM2.5

(per 10 μg/m3)
3.75**
(1.53)

3.27**
(1.54)

Observations 1595 1538 1595 1538 1595 1538
# Counties 215 209 215 209 215 209
Fixed Effects Y Y Y Y Y Y
Weather Y Y Y

Notes: Each column represents a separate regression. Columns (1)–(2) estimate
the effects of local and non-local straw fires on PM2.5. Columns (3)–(4) estimate
the effects of local and non-local straw fires on percentage changes in the number
of deaths. Columns (5)–(6) reports the IV estimates. Weather variables include
wind speed, wind direction, precipitation, temperature, and relative humidity.
Standard errors in parentheses are two-way clustered at county and month level.
***p < 0.01, **p < 0.05, *p < 0.1.

Table 5
Leverage wind directions to estimate the impact of pollution on death.

First Stage (Y¼PM2.5) Reduced-Form
Estimates (Y ¼
Log # of Deaths)

IV Estimates
(Y ¼ Log # of
Deaths)

(1) (2) (3) (4) (5) (6)

Panel A. First-Stage and Reduced-Form Estimates
Upwind Burning

(per 10 points)
12.76***
(3.79)

11.70***
(2.53)

5.79**
(2.87)

5.02*
(3.01)

Downwind
Burning

(per 10 points)

4.09**
(1.28)

4.24***
(1.18)

2.04
(2.98)

1.68
(2.87)

Panel B. Wald Type Estimates
PM2.5

(per 10 μg/m3)
4.33 4.47

Observations 1595 1538 1595 1538 1595 1538
# Counties 215 209 215 209 215 209
Fixed Effects Y Y Y Y Y Y
Weather Y Y Y

Notes: Each column represents a separate regression. Columns (1)–(2) examine
the effects of upwind and downwind straw fires on PM2.5 in a county. Columns
(3)–(4) examine the effects of upwind and downwind straw fires on percentage
changes in the number of deaths. Columns (5)–(6) report the Wald-Type esti-
mates. Weather variables include wind speed, wind direction, precipitation,
temperature, and relative humidity. Standard errors in parentheses are two-way
clustered at county and month level. ***p < 0.01, **p < 0.05, *p < 0.1.

20 The 95% confidence interval of the baseline estimate, 3.25%, is [0.45%,
6.06%], which contains all the point estimates in Tables 4 and 5.
21 We also use data for “bottled water” as a placebo, and find that it is not
related to short-run variations of pollution and straw burning for either summer
or winter.
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that non-local burning is the primary contributor to the elevation in
PM2.5 concentrations in a given county, as shown in Columns (1) and (2).
This is likely because over 88% of the total number of straw fires
occurred within the 50-km radius of a county are non-local. A 10 μg/m3

increase in PM2.5 concentrations will increase mortality by 3.27%–3.75%
(Columns (5) and (6)). These estimates are essentially the same as the
baseline estimates in Table 3.

In Table 5, we summarize the results from estimating Equations (5),
(7) and (8). In Columns (1) and (2), we see that upwind straw fires indeed
have a larger impact on air quality than do downwind straw fires. In
Columns (3) and (4), we find a similar pattern: upwind fires cause more
people to die than do downwind fires. Both sets of results are robust to
the inclusion of time-varying weather controls. In the last two columns,
10
we estimate the impact of pollution on mortality using differences in the
coefficients between upwind and downwind straw fires. We find that a
10 μg/m3 increase in PM2.5 concentrations will increase deaths by 4.47%.
The estimates are slightly larger than those in Table 3, but the differences
are statistically insignificant.20

Our interpretation of these results is that, although conceptually there
are good reasons to worry about the endogeneity of straw burning, this
concern matters very little in reality. In subsequent heterogeneity anal-
ysis, we thus focus on estimates from the baseline IV model. In addition,
the baseline IV estimates are marginally more conservative than the
alternative IV estimates, so when we use the baseline estimates to eval-
uate the potential gains from controlling straw burning, the benefit es-
timate would be interpreted as the lower bound.

6.2. Avoidance behavior

Avoidance or defensive behaviors can complicate the interpretations
of the estimated impacts of air pollution. If people take measures to
reduce exposure, such as reducing outdoor activities or using air filters,
the true physiological impact of pollution will be under-estimated (e.g.,
Moretti and Neidell, 2011).

There are three reasons why we think avoidance behavior does not
play an important role in our setting. First, we examine the visibility data
and find that including visibility as a control in the regression has no
impact on the air pollution effect (Panel A of Table 6). We also estimate
the relationship between visibility and straw burning and find that straw
burning does not significantly degrade visibility (Appendix Table A2).

Second, we use data in the summer season, when there are better
meteorological conditions for pollutant dispersion, and the average
PM2.5 concentrations are relatively low. Pollution alerts are rarely trig-
gered during the summer, so we expect that people undertake little
avoidance behavior. To test this idea, we estimate the impact of straw
burning on individuals’ online searches for defensive equipment, using
the Baidu Search Index. Baidu Search Index is analogous to Google
Trends and tells us how many people search for certain keywords within
a certain period of time in cities. Previous studies show that online search
activities for “anti-PM2.5 mask,” “haze,” “PM2.5” and “Air Quality Index”
(AQI) are very sensitive to air pollution and strongly correlated with
online sales of defensive equipment (e.g., Liu et al., 2018). As reported in
Panel B of Table 6, we find that straw burning does not affect any of these
searches during the summer seasons on which we focus. In contrast, in
the winter season when air quality is poorer, people are more likely to
search more for these items when straw burning increases.21

Our conclusion is that the public is not quite aware of pollution in the
summer, so our estimates are unlikely to be confounded by avoidance
behaviors in a meaningful way.

6.3. Robustness checks

We conduct a variety of robustness checks to address some other is-
sues related to our baseline findings. First, one reasonable concern about
the satellite-detected straw burning data is that thick clouds may cover
small fires, which will result in measurement errors in the explanatory
variable. We thus directly include cloud coverage in the regression and
check whether the estimates are affected. The results are reported in
Column (3) of Appendix Table A4. We find that controlling for cloud
coverage yields similar IV estimates, suggesting that the number of days



Table 6
Straw burning and avoidance behaviors.

(1) (2) (3) (4) (5) (6)

Panel A. PM2.5 and Deaths (IV Estimates): Controlling for Visibility (%)
All-Cause Cardiorespiratory Non-Cardiorespiratory

PM2.5

(per 10 μg/m3)
3.25**
(1.43)

3.30**
(1.41)

3.80***
(1.48)

3.87***
(1.45)

�1.21
(2.10)

�1.27
(2.19)

Visibility N Y N Y N Y
Observations 1538 1538 1538 1538 1538 1538
# Counties 209 209 209 209 209 209

Panel B. Straw Burning and Online Search
Anti-PM2.5 Mask Haze PM2.5 AQI Bottled Water

Summer Burning �0.26
(7.24)

�1.48
(3.09)

0.14
(1.35)

�10.70
(6.52)

1.57
(4.59)

/
/

Winter Burning 15.30***
(4.60)

6.17**
(2.47)

5.21***
(1.22)

13.40***
(1.43)

0.76
(2.34)

/
/

Observations 1383 1383 1383 1383 1383 /
# Cities 154 154 154 154 154 /

Notes: Each cell represents a separate regression. Panel A summarizes the IV estimates with/without visibility as control. In Panel B, dependent variables include Baidu
Search Indices for anti-PM2.5 mask, haze, PM2.5, AQI and bottled water. We separately estimate the impact of straw burning on these outcomes for summer and winter.
Location (county or city), month and year fixed effects, and weather conditions (wind speed, wind direction, temperature, precipitation, and relative humidity) are
always controlled. Standard errors in parentheses are two-way clustered at county/city and month level. ***p < 0.01, **p < 0.05, *p < 0.1.
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with thick clouds is largely random, conditional on location and time
fixed effects.22

Second, we control for SO2 and NOx in the regression and find that the
PM2.5 estimates remain robust. This finding suggests that changes in
PM2.5 concentrations, induced by straw burning, are indeed not corre-
lated with changes in SO2 and NOx. The results are reported in Column
(4) of Appendix Table A4.

Third, instead of using the logarithm of the number of deaths as the
outcome, we use the standardized mortality rate based on death and
census data as an alternative outcome. The results are reported in Ap-
pendix Table A5. The standardized mortality rate is defined as the age-
adjusted number of deaths per 100 thousand people.23 We get consis-
tent results using this alternative measure. If monthly straw burning in-
creases by 10 points, all-cause and cardiorespiratory mortality rates will
increase respectively by 1.71% and 1.91%. The IV estimates show that a
10 μg/m3 increase in monthly PM2.5 will lead to a 3.57% and a 4.00%
increase in all-cause and cardiorespiratory mortality rates, respectively.

Fourth, we use the log of (1 þ the number of straw fires) as the
explanatory variable to estimate the effect of a percentage change in
straw burning on mortality. The results are reported in Appendix
Table A6. We find that a 10% increase in monthly straw burning in a
county will increase all-cause deaths by 0.09%. The effect is driven pri-
marily by extra deaths from cardiorespiratory diseases, consistent with
the main findings.

Fifth, we include polynomial terms of the number of straw fires and
weather conditions to explore whether there is any nonlinear effect of
straw burning and weather. Appendix Table A7 represents the estimates
with the quadratic term of straw burning. Straw burning’s effect on
deaths is slightly concave, with a turning point of around 40. Given that
the average monthly number of straw fires in a county is 2 (with a
standard deviation of 8) in our data, the health effect of straw burning
22 Note that, if it was raining, there would be no measurement errors in straw
burning because there is no burning on rainy days.
23 We do not use the age-adjusted mortality results as the main outcome, for
two reasons. First, population data for different age groups in different years
need to be interpolated from the census data, which are only available every five
years. So, conceptually it may increase inaccuracy in the health measure when
we adjust the age structure. Second, as a practical matter, we use monthly
changes in pollution/death within the same location for a given year for iden-
tification, so it does not matter whether we adjust the age structure (as it only
rescales the outcome by population structure in a year).
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can be well-approximated by a linear function. In addition, in Appendix
Table A8, we follow Deschênes and Greenstone (2011) and use 5 tem-
perature bins, namely (,15), [15,20), [20,25), [25,30), and [30), to
control for temperature nonlinearly, and the estimates remain robust.

Sixth, we include the number of previous month’s straw fires in the
regression and try to examine potential lagged effects. The results are
reported in Appendix Table A9. We see that the lagged burning variable
is statistically insignificant in all regressions.

Seventh, in Appendix Table A10, we summarize the results using
different matching distances between monitoring stations and counties.
We find the results are quantitatively similar using alternative ways to
match the DSP locations and air quality.

Finally, our main specification merges all data using the geometric
county centers. Alternatively, we can match all data sets using the
administrative centers. The results are reported in Appendix Table A11.
We find a consistent impact of straw burning on all-cause deaths through
cardiorespiratory diseases. The IV estimates are also similar in size to our
baseline findings.

7. Heterogeneity

The health effects of burning straw can differ among subpopulations,
as different individuals may have distinct exposures or physical responses
to air pollution. We explore the health effects of straw burning by loca-
tion, gender, and age in Table 7.

Panel A compares the relative health risk between urban districts and
rural counties. We find that, although straw burning degrades both urban
and rural air quality, residents in rural counties are more likely to be
affected. Specifically, if the number of monthly straw fires increases by
10, all-cause mortality will increase by 2.52% in rural areas, but there is
no significant relationship for the urban areas. The IV estimates of PM2.5
are consistent with the reduced-form estimates using straw burning.
Column (4) shows that a 6.69% increase in mortality is associated with a
10 μg/m3 increase in PM2.5 in rural areas, while there is no impact of
pollution caused by straw burning on mortality in the urban areas. Panel
B further distinguishes lower-income areas from higher-income areas
based on the median GDP per capita in 2012.24 We find a similar pattern:
the health impact is concentrated in areas with lower incomes.
24 There are 42 urban districts and 66 rural counties in the lower-income
group, and there are 66 urban districts and 41 rural counties in the higher-
income group.



Table 7
Heterogeneous effects of straw burning pollution on death.

Reduced-Form: # Straw Fires (per 10
points)

IV: PM2.5 (per 10 μg/
m3)

(1) (2) (3) (4)

Panel A: Urban vs. Rural
Urban 0.42

(0.52)
0.12
(0.39)

0.67
(0.85)

0.20
(0.69)

Rural 2.90**
(1.23)

2.52**
(1.17)

7.42***
(1.63)

6.69***
(1.83)

Panel B: Rich vs Poor
Urban 0.42

(0.52)
0.12
(0.39)

0.67
(0.85)

0.20
(0.69)

Rural 2.90**
(1.23)

2.52**
(1.17)

7.42***
(1.63)

6.69***
(1.83)

Panel B: Rich vs Poor
Rich 0.30

(0.66)
0.11
(0.69)

0.67
(1.50)

0.27
(1.71)

Poor 2.43**
(1.01)

2.15***
(0.83)

4.36***
(0.96)

3.95***
(0.77)

Panel C: Male vs Female
Female 1.80

(1.26)
1.40
(1.02)

3.58*
(1.98)

2.92
(1.79)

Male 1.85**
(0.80)

1.74**
(0.76)

3.67***
(1.32)

3.64**
(1.55)

Panel D: By Age Group
60þ 1.71**

(0.87)
1.53**
(0.70)

3.40***
(1.28)

3.20***
(1.20)

40–59 3.27***
(1.27)

3.07**
(1.41)

6.50***
(1.87)

6.41**
(2.66)

20–39 �0.23
(2.72)

�0.96
(2.22)

�0.46
(5.43)

�2.00
(4.68)

5–19 3.56
(2.16)

2.29
(2.42)

7.08
(4.77)

4.78
(5.67)

1–4 1.50
(2.00)

1.17
(1.85)

2.97
(4.33)

2.45
(4.15)

0 1.80
(2.14)

2.62
(2.08)

3.77
(4.60)

6.17
(5.33)

Fixed Effects Y Y Y Y
Weather Y Y

Notes: Each cell represents a separate regression. Columns (1)–(2) list the
reduced-form estimates of the mortality effects of straw burning. Columns
(3)–(4) report the IV estimates of PM2.5. Panel A compares urban and rural areas.
Panel B compares rich and poor areas separated by the median of GDP per capita
in 2012. Panel C compares males with females. Panel D compares different age-
groups. County, month, year fixed effects and weather conditions (wind speed,
wind direction, temperature, precipitation, relative humidity) are controlled.
Standard errors in parentheses are clustered by county and month. ***p < 0.01,
**p < 0.05, *p < 0.1.

25 We cannot reject the null hypothesis that the air pollution impact on males is
greater than that on females.
26 Nevertheless, the results for the infant group should be interpreted with
caution. A known issue in the DSP reporting process is that infant deaths are
more likely to be under-reported. While the Chinese CDC has been conducting
retrospective surveys to determine under-reporting rates in different DSP loca-
tions, such adjustments are only available at the yearly level. It is unclear to use
whether under-reporting of infant deaths differs across months.
27 http://nys.mof.gov.cn/zhengfuxinxi/czpjZhengCeFaBu_2_2/201606/t201
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While this study is unable to pin down the exact channels through
which the air pollution effect is mitigated in urban/richer areas, a
growing line of literature suggests that the quality of medical services,
availability of air pollution information, and defensive investment are
possible factors. For example, Cheung et al. (2020) show that the impact
of air pollution on mortality depends in part on whether the residents
have immediate access to emergency services. When air pollution trig-
gers a heart attack or an acute respiratory disease, immediate treatment
is critical to save a patient’s life. In Barwick et al. (2019), the researchers
find that access to pollution information dramatically increased house-
holds’ awareness about pollution and significantly reduced mortality
caused by pollution. As air pollution information is largely unavailable in
rural/poorer areas, it is not surprising that rural/poorer residents are
more vulnerable to air pollution. Finally, as shown by Sun et al. (2017)
and Ito and Zhang (2020), individuals’ defensive investments in face
masks and air filters depend not only on the air pollution level, but also
on their income. Poor people are much less likely to invest in defensive
equipment, which may significantly increase their exposure.

We are not alone in highlighting the significant urban-rural hetero-
geneity in the air pollution effect. Zhou et al. (2015) and Fan et al. (2020)
observe similar patterns in their studies, while they use different
12
identification strategies and focus on different research contexts. The
sharp contrast between urban and rural areas indicates that previous
studies, which focus mostly on urban residents, may understate the
health cost of air pollution.

Panel C of Table 7 summarizes our findings by gender. We find that
the mortality risk associated with straw burning is more significant for
males.25 This is generally consistent with the public health literature, as
males in China are more likely to smoke and thus have compromised
cardiorespiratory functions. Males are also more likely to work in the
farmlands, which further increases their exposure to air pollution.

Panel D of Table 7 reports the results for different age groups: 0 (in-
fants), those between 1 and 4, those between 5 and 19, those between 20
and 39, those between 40 and 59, and those above 60 years old. We find
that a 10-point increase in the monthly number of straw fires was asso-
ciated with a 1.53% increase in mortality for people above 60. Mean-
while, middle-aged people are also vulnerable to air pollution caused by
straw burning. We estimate that, if the number of monthly straw fires
increases by 10, the mortality risk for people between 40 and 59 will
increase by 3.07%. This result is somewhat surprising, as existing liter-
ature typically finds that air pollution has a greater impact on the elderly
(e.g., He et al., 2016; Fan et al., 2020). Our interpretation of these results
is that, because rural middle-aged people are still a major labor force in
the farmlands, their exposure to straw burning pollution can be greater
than other groups. The ambient air pollution concentration in the county
may understate this group’s actual exposure to air pollution.

Straw burning does not significantly predict mortality among those
below 40 years old, including infants. The null effect on the infant group
also surprises us, as many studies show that infants are vulnerable to air
pollution (e.g., Arceo et al., 2016; Chay and Greenstone, 2003; Currie and
Neidell, 2005). Nevertheless, this result is consistent with Rangel and
Vogl (2019), who show that air pollution from agricultural fires increases
the likelihood of stillbirth but has no impact on infant mortality. Their
argument is that infants at the highest risk for postnatal mortality might
have been selected out before they were born, i.e., there may exist a
survivor bias when studying infant mortality. As we do not have data for
stillbirths or other measures of infant health, we are unable to further test
this argument.26

The IV estimates show similar patterns. The effects of PM2.5 are large
and statistically significant for people over 40 years old. People below 40
are unlikely to die from air pollution caused by straw burning.

8. Straw recycling

In 2016, the central government of China enforced an incentive-based
policy that subsidizes individuals and enterprises that recycled straw
from the field.27 The top 10 provinces with the most intensive straw
burning activities each received 100 million Chinese yuan (around 14.2
million USD) in 2016 to recycle straw. These provinces are Henan, Anhui,
Heilongjiang, Shandong, Jilin, Hebei, Jiangsu, Liaoning, Shanxi and
Inner Mongolia. The subsidy’s objective is to improve air quality by
incentivizing farmers to recycle straw instead of burning it. The policy
continued in 2017 the total amount of subsidy increased to 1.3 billion
Chinese yuan (around 186 million USD).

We examine how this subsidy program affects straw burning using a
60603_2311988.html.

http://nys.mof.gov.cn/zhengfuxinxi/czpjZhengCeFaBu_2_2/201606/t20160603_2311988.html
http://nys.mof.gov.cn/zhengfuxinxi/czpjZhengCeFaBu_2_2/201606/t20160603_2311988.html
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Difference-in-Differences (DiD) approach:

Yit ¼ αþ β*subsidyit þ γ*Xit þ μi þ πt þ εit (7)

where Yit is the number of burning points or the PM concentrations in
province i in year t. Each “year” is defined by the two straw burning
seasons, fromMay 20 to July 20 and from September 20 to November 20,
a total of 124 days. subsidyit is a dummy variable equal to 1 if province i
received a subsidy in year t. Xit is a vector of meteorological conditions,
including wind speed, wind direction, temperature, relative humidity,
and precipitation. μi and πt control for province and year fixed effects. β is
the key parameter of interest. It estimates the effect of straw recycling
subsidy on the number of straw fires or air quality.

The identifying assumption of the above model is that the treated
provinces and untreated provinces should follow a parallel trend before
2016. To formally test the parallel trend assumption, we use an event-
study approach following Jacobson et al. (1993) and estimate the dif-
ference in the number of straw fires between the two groups before and
after 2016. We use 2015 as the reference year and compare the changes
in the number of straw burning points between the two groups in other
years relative to 2015. The estimates are plotted in Panel A of Fig. 3.
While we observe a slight downward trend before 2015, none of the
Fig. 3. Test for Parallel Pre-Trends in Straw Burning and PM2.5. Notes: The upper figu
fires based on an event-study analysis following the methods of Jacobson et al. (199
PM2.5. The year 2015 (one year before the subsidy) is chosen as the reference.
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coefficients before 2015 are statistically significant. After the program
was introduced, i.e., for 2016, we see a dramatic decline in the number of
straw fires in the subsidized provinces. The effect remained positive and
statistically significant in 2017. The corresponding event-study regres-
sion results are reported in Appendix Table A12.

Table 8 summarizes the regression results. Column (1) reports the
baseline DiD result, where only province and year fixed effects are
included. Column (2) further controls for weather conditions. In Column
(3), we add a time trend that allows the treated provinces to evolve
differently from the control provinces. This specification aims to address
the concern that the treated and control provinces may not completely
follow a parallel trend before 2016, as illustrated by the slight downward
trend in Fig. 3. In Column (4), we further control for a set of province-
specific time trends, allowing each province to have a different trend.
With this most restrictive specification, we find that the annual number
of straw fires in the subsidized provinces on average dropped by 153
since 2016 compared with provinces without subsidies. The less
demanding specifications in Columns (1) to (3) generate slightly larger
but quantitatively similar estimates. In Column (5), we use the logarithm
of the number of straw fires as the outcome variable and find that the
number of straw fires decreased by 28.8% (e�0.339-1).
re in Panel A plots the impacts of straw recycling subsidy on the number of straw
3). The lower figure in Panel B plots the impacts of straw recycling subsidy on



Table 8
Straw recycling subsidy and air quality.

VARIABLES # of Straw Fires Log(1þBurning) PM2.5 PM10 SO2 NO2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Subsidy �193.5***
(17.6)

�188.5***
(42.4)

�196.7***
(41.4)

�152.9***
(40.2)

�0.339*
(0.196)

�4.33**
(1.75)

�9.87***
(3.35)

0.03
(0.67)

�0.33
(0.52)

Observations 186 186 186 186 186 155 186 186 186
R-squared 0.58 0.70 0.70 0.94 0.95 0.96 0.87 0.85 0.90
# Provinces 31 31 31 31 31 31 31 31 31
Province FE Y Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y Y
Weather Y Y Y Y Y Y Y Y
Treatment Trend Y
Provincial Trend Y Y Y Y Y Y

Notes: Each column represents a separate regression. Columns (1)–(4) list the effect of straw recycling subsidy on the number of straw fires in a province during straw
burning seasons in a year. Column (5) uses the logarithm of the number straw fires as the dependent variable. Columns (6)–(9) report the effects of the straw recycling
subsidy on air pollutants including PM2.5, PM10, SO2, and NO2. Province and year fixed effects are always controlled. Weather conditions include wind speed, wind
direction, temperature, precipitation, relative humidity. Standard errors in parentheses are clustered by province and year. ***p < 0.01, **p < 0.05, *p < 0.1.
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In Panel B of Fig. 3, we repeat the event-study analysis for PM2.5. We
focus on 2013 to 2017, as PM2.5 was not monitored in most parts of China
before 2013. We expect that the changes in PM2.5 levels would follow the
same pattern as changes in straw fires because straw burning primarily
emits particulates. Indeed, we observe that the PM2.5 levels fell signifi-
cantly in 2016, and this reduction remained statistically significant in
2017, implying that straw burning reduction causally improved air
quality. In Column (6) of Table 8, we report the impact of straw recycling
subsidy on PM2.5 using the most restrictive specification. We find that
straw burning subsidy decreased the PM2.5 concentrations in the treated
provinces by 4.33 μg/m3 during the straw burning seasons. Column (7)
further reports the results for PM10 for comparison. The subsidy reduced
PM10 concentrations by 9.87 μg/m3. In Columns (8) and (9), we find no
impact of the subsidy on the concentrations of SO2 nor NO2. This is in line
with the scientific literature and further enhances the credibility of our
findings.28

The significant drops in both straw burning and PM2.5 have important
implications for public health in China. We can conduct a back-of-the-
envelope calculation to compare the benefits and costs of the policy.
The mortality rate of the 10 treated provinces was 6.41 per thousand in
2015, and the total population of the 10 provinces was 614.2 million. To
simplify the calculation, assuming that the incidence of deaths is equally
distributed throughout the year, so the total number of deaths during the
straw burning seasons would have been around 1.34 million in 2015.
According to the IV estimate in Section 5.3, a 10 μg/m3 change in PM2.5

predicts a 3.25% change in mortality. That implies that a 4.33 μg/m3

reduction in mean PM2.5 concentrations during the burning seasons
would bring down the mortality rate by 1.41%, equivalent to averting
roughly 18,900 premature deaths annually.29 Note that in this calcula-
tion, we assume that the subsidies affect individuals’ health only through
its impacts on straw burning pollution. We cannot fully rule out the
possibility that the subsidy may directly improve health through the
income channel, as farmers’ budget constraints can be relieved by the
subsidy.
28 As a set of placebo tests, we run the same set of regressions using air
pollution measures during the non-burning seasons. We find no difference in air
quality between the subsidized provinces and the non-subsidized provinces
during the non-burning seasons, as reported in Appendix Table A13 (Columns
(1) to (4)). This alleviates the concern that other agricultural or pollution pol-
icies targeted at the subsidized provinces may confound the DiD estimates, or
that the two groups of provinces are systematically different in other ways. In
fact, we are unaware of any other policy in company with the straw-recycling
subsidy that was applied to the same set of provinces in 2016.
29 The mortality data in 2016 are unavailable for use in this project. Hence, the
time windows for mortality estimation and policy evaluation are different.
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We can monetize the health benefit using the value of statistical life
(VSL). Since straw burning has a negligible effect on urban residents, the
cost of premature death is estimated for rural residents only. Fan et al.
(2020) suggested using 2.92 million Chinese yuan (about 440,000 USD)
as the VSL for a typical Chinese rural resident. The health benefit from
reduced mortality is estimated to be about 55 billion Chinese yuan
(around 7.85 billion USD).

For the cost estimate, we look at three components: (1) the total
amount of subsidy, (2) additional work to enforce the policy and
encourage farmers to recycle straw, and (3) potential changes in agri-
cultural production. The first component is straightforward: the gov-
ernment provided 1 billion Chinese yuan (142 million USD) in 2016 and
1.3 billion Chinese yuan (186 million USD) in 2017 to encourage farmers
to recycle straw. The second cost component is more difficult to estimate,
as we do not have data on how much additional work is needed to
implement the policy. However, we believe the additional administrative
cost did not exceed 1 billion yuan in 2016 and did not exceed 1.3 billion
yuan in 2017. This is because, if the additional work alone had beenmore
costly than the total amount of subsidy, the policy would not have been
implemented. Adding these two components together, the upper-bound
of the policy’s cost would be less than 2.6 billion Chinese yuan each
year (1.3 billion direct subsidies þ 1.3 billion for additional adminis-
trative work).

To estimate the third cost component, we examine whether the sub-
sidy affects the total yield of agriculture and total grain output (the most
important type of crop output in China). The concern here is that if in-
dividuals were incentivized to engage more in agricultural production
(because of the higher value of agriculture), the cost of the policy could
be unintendedly larger. However, as reported in Appendix Table A13, we
find that the subsidy does not affect agricultural output. Given this, we
conclude that the third cost component should be small in magnitude,
and therefore we leave it out of our cost calculation.

If we compare the benefit of controlling straw burning (55 billion
Chinese yuan or 18,900 averted deaths) with the cost of subsidizing
straw recycling (at most 2.6 billion Chinese yuan per year), we see that
the benefit from reduced mortality alone is an order of magnitude larger
than the cost. To put these numbers in another way, it costs at most
137,600 Chinese yuan (19,700 USD) to avert a premature death when
the government subsidizes straw recycling. While these calculations are
coarse, the significant difference in their magnitudes suggests that there
would be significant welfare gains from controlling straw burning.

Note that improved air quality would also reduce morbidity, help
individuals save on defensive expenditures on air filters and facial masks,
increase labor productivity, and bring about co-benefits for the climate.
Existing studies show that the benefits along these dimensions are also
substantial (e.g., Barwick et al., 2018; Chang et al., 2019; Ito and Zhang,
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2020; Zhang and Mu, 2018). Were these benefits also considered, we
expect the gain from controlling straw burning to be even greater.

9. Conclusions

This paper investigates the impacts of agricultural straw burning on
air pollution and mortality in China. We estimate that a 10-point increase
in the number of straw burns detected by satellites in a county in a month
will lead to a 7.62% increase in monthly PM2.5 concentrations and a
1.56% increase in deaths. Straw burning primarily causes people to die
from cardiorespiratory diseases. Using straw burning as an instrument for
PM2.5, we further estimate that a 10 μg/m3 change in PM2.5 will cause a
3.25% change in mortality and 3.80% change in cardiorespiratory mor-
tality, which are similar in magnitude to previous estimates on the im-
pacts of air pollution in China. Using alternative instruments (non-local
straw burning and wind directions) generates quantitatively similar es-
timates, supporting the causal interpretation of our findings.

The health impacts of straw burning are highly heterogeneous. Spe-
cifically, the effects are greater in rural and poor areas than in urban and
rich areas, suggesting better socio-economic conditions can mitigate the
impact of air pollution on mortality. Straw burning mainly impairs the
health of middle-aged and elderly people, so those who are more
vulnerable and are more intensively exposed to the straw burning smoke
are more likely to die due to straw burning.

Overall, these findings highlight the large health cost of straw burning
and the need for more effective regulatory efforts. Exploiting China’s
straw recycling policy, we further show that providing subsidies to
farmers and enterprises incentivized them to recycle straw, which
significantly reduced air pollution caused by straw burning. Our
exploratory analysis suggests that the benefits of subsidizing straw
recycling are substantially larger than the costs. Other countries that
facing similar problems may consider adopting similar policies.

Note that in this study we are only able to quantify the short-term
15
health impacts of straw burning pollution on mortality. Presumably,
accumulated exposure to air pollution would cause larger health dam-
ages to individuals (e.g. Ebenstein et al., 2017). That implies, the po-
tential benefits from controlling straw burning would be even greater if
the straw recycling can be sustained. Future research is warranted to
better understand the welfare implications of these regulations in the
long run.
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Appendix
Table A1
Effects of Air Pollution on Death using Daily Data.

VARIABLES (1) (2) (3)
All-Cause
 Cardiorespiratory
 Non-Cardiorespiratory
PM2.5 (per 10 μg/m3)
 1.89**
(0.94)
2.59***
(0.89)
�0.97
(1.16)
Observations
 25,217
 25,217
 25,217

# Counties
 209
 209
 209

County FE
 Y
 Y
 Y

Week-of-Year FE
 Y
 Y
 Y

Day-of-Week FE
 Y
 Y
 Y

Weather
 Y
 Y
 Y
Notes: Each cell represents a separate regression using a distributed lag model with 7-days of straw burning as an instrument
for daily PM2.5. Weather conditions include wind speed, wind direction, temperature, precipitation, relative humidity.
Standard errors in parentheses are clustered by county and date. ***p < 0.01, **p < 0.05, *p < 0.1.
Table A2
Effects of Straw Burning on Different Pollutants.

VARIABLES (1) (2) (3) (4) (5)
PM2.5
 PM10
 SO2
 NO2
 Visibility
Straw Burning (per 10 points)
 7.62***
(0.84)
4.70***
(0.65)
�1.04
(2.50)
1.23
(1.45)
�0.07
(0.77)
Observations
 1538
 1429
 1467
 1461
 1538

R-squared
 0.823
 0.377
 0.220
 0.144
 0.386
(continued on next column)
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Table A2 (continued )
VARIABLES
 (1)
 (2)
16
(3)
 (4)
 (5)
PM2.5
 PM10
 SO2
 NO2
 Visibility
# Counties
 209
 203
 204
 204
 209

County FE
 Y
 Y
 Y
 Y
 Y

Year FE
 Y
 Y
 Y
 Y
 Y

Month FE
 Y
 Y
 Y
 Y
 Y

Weather
 Y
 Y
 Y
 Y
 Y
Notes: Each column lists results from a separate regression. Columns (1)–(4) report the effects of 10 additional straw fires on monthly PM2.5, PM10, SO2 and NO2

in counties. Column (5) reports the effects on monthly visibility. Weather includes wind speed, wind direction, precipitation, temperature, relative humidity.
Standard errors in parentheses are two-way clustered at county and month level. ***p < 0.01, **p < 0.05, *p < 0.1.
Table A3
Straw Burning Decision.

VARIABLES (1) (2) (3)
Burning
 Burning
 Burning
L1.PM2.5
 0.00014*
(0.00008)
0.00012
(0.00008)
0.00012
(0.00008)
L1.SO2
 �0.000004
(0.00030)
�0.00012
(0.00030)
�0.00011
(0.00030)
L1.NO2
 0.00005
(0.00021)
0.00011
(0.00021)
0.00007
(0.00022)
wind speed
 0.00067
(0.00089)
0.00105
(0.00092)
0.00020
(0.00094)
precipitation
 0.00003
(0.00004)
0.00004
(0.00005)
0.00002
(0.00005)
temperature
 0.00157**
(0.00068)
0.00145*
(0.00077)
0.00184**
(0.00076)
relative humidity
 �0.00177***
(0.00016)
�0.00180***
(0.00016)
�0.00162***
(0.00016)
Observations
 27,178
 27,178
 27,178

R-squared
 0.073
 0.077
 0.106

# Counties
 204
 204
 204

Wind Direction
 Y
 Y
 Y

County FE
 Y
 Y
 Y

Week FE
 Y
 Y

Week-of-Year FE
 Y

Day FE
 Y
Notes: Each column represents a separate regression of straw burning decision (¼1 if there is at least one burning
point within a county) on air pollution of previous day and weather conditions (wind speed, wind direction,
precipitation, temperature, and relative humidity). L1 denotes air pollutants on the previous day. Standard errors
in parentheses are clustered by county. ***p < 0.01, **p < 0.05, *p < 0.1.
Table A4
Effects of PM2.5 on Log # of Death.

VARIABLES IV OLS
(1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)
Panel A. All-Cause Mortality

PM2.5 (per 10 μg/m3)
 3.56***

(1.38)

3.25**
(1.43)
3.16**
(1.44)
3.17***
(1.20)
0.13
(0.26)
0.32
(0.23)
0.33
(0.23)
0.25
(0.29)
Panel B. Cardiorespiratory Mortality

PM2.5 (per 10 μg/m3)
 4.19***

(1.45)

3.80***
(1.48)
3.69**
(1.48)
3.87***
(1.21)
0.29
(0.43)
0.47
(0.38)
0.52
(0.38)
0.39
(0.43)
Panel C. Non-Cardiorespiratory Mortality

PM2.5 (per 10 μg/m3)
 �1.43

(1.78)

�1.21
(2.10)
�1.27
(2.13)
�1.11
(2.03)
�0.46
(0.35)
�0.25
(0.47)
�0.24
(0.48)
�0.24
(0.41)
# Counties
 215
 209
 208
 203
 215
 209
 208
 203

Kleibergen-Paap F-Statistics
 19.6
 22.5
 15.7
 11.6

Fixed Effects
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y

Weather
 Y
 Y
 Y
 Y
 Y
 Y

Cloud
 Y
 Y
 Y
 Y

SO2, NO2
 Y
 Y
Notes: Each cell represents a separate regression. Columns (1)–(4) report IV estimates of effects of PM2.5 on mortality, and Columns (5)–(8) report the OLS estimates.
County, month and year fixed effects, weather conditions (wind speed, wind direction, temperature, precipitation, relative humidity), cloud coverage, SO2 and NO2 are
controlled one by one. Standard errors in parentheses are two-way clustered at county and month level. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table A5
Effects of Straw Burning and PM2.5 on Mortality Rate.

VARIABLES (1) (2) (3)
17
All-Cause Mortality Rate (log)
 Cardiorespiratory Mortality Rate (log)
 Non-Cardiorespiratory Mortality Rate (log)
Panel A: Reduced Form

Straw Burning (per 10 points)
 1.71*

(0.95)

1.91*
(1.09)
1.13
(0.82)
Panel B: IV and OLS

IV: PM2.5 (per 10 μg/m3)
 3.57**

(1.78)

4.00**
(2.00)
2.37
(1.55)
OLS: PM2.5 (per 10 μg/m3)
 0.45**
(0.20)
0.67*
(0.34)
0.22
(0.43)
Observations
 1538
 1538
 1538

# Counties
 209
 209
 209
Notes: Each cell represents a separate regression. Panel A lists the reduced-form estimates of straw burning’s effects on age-adjusted mortality rate (log). Panel B presents
the IV and OLS estimates of the effects of PM2.5 on age-adjusted mortality rate. County, month, year fixed effects and weather conditions (wind speed, wind direction,
temperature, precipitation, relative humidity) are controlled. Standard errors in parentheses are two-way clustered at county and month level. ***p< 0.01, **p< 0.05,
*p < 0.1.

Table A6
Effect of Straw Burning (log) on Death.

VARIABLES All-Cause Cardiorespiratory Non-Cardiorespiratory
(1)
 (2)
 (3)
 (4)
 (5)
 (6)
Straw Burning (per 10%)
 0.11**
(0.05)
0.09**
(0.04)
0.11**
(0.05)
0.09***
(0.03)
0.03
(0.11)
0.06
(0.12)
Observations
 1595
 1538
 1595
 1538
 1595
 1538

# Counties
 215
 209
 215
 209
 215
 209

Fixed Effects
 Y
 Y
 Y
 Y
 Y
 Y

Weather
 Y
 Y
 Y
Notes: Each column represents a separate regression. Columns (1)–(2) examine the effects of a 10% increase in straw fires on the percentage change in monthly all-cause
mortality within a county. Columns (3)–(4) and Columns (5)–(6) examine the effects of straw burning on cardiorespiratory and non-cardiorespiratory mortality,
respectively. Weather variables include wind speed, wind direction, precipitation, temperature, relative humidity. Standard errors in parentheses are two-way clustered
at county and month level. ***p < 0.01, **p < 0.05, *p < 0.1.

Table A7
Nonlinear Effects of Straw Burning on Death.

VARIABLES All-Cause Cardiorespiratory Non-Cardiorespiratory
(1)
 (2)
 (3)
 (4)
 (5)
 (6)
(per 10 points)

Straw Burning
 3.71***

(1.37)

3.37***
(1.15)
4.50***
(1.34)
4.00***
(1.10)
1.82
(1.68)
2.42
(1.75)
Straw Burninĝ2
 �0.04***
(0.01)
�0.04***
(0.01)
�0.05***
(0.01)
�0.05***
(0.01)
�0.05***
(0.02)
�0.06***
(0.02)
Observations
 1595
 1538
 1595
 1538
 1595
 1538

R-squared
 0.89
 0.893
 0.842
 0.844
 0.782
 0.784

# Counties
 215
 209
 215
 209
 215
 209

Fixed Effects
 Y
 Y
 Y
 Y
 Y
 Y

Weather
 Y
 Y
 Y
Notes: Each column represents a separate regression. Columns (1)–(2) list effects of 10 additional straw fires on percentage change in monthly all-cause mortality within
a county. Columns (3)–(4) and Columns (5)–(6) examine the effects of straw burning on cardiorespiratory and non-cardiorespiratory mortality, respectively. Weather
variables include wind speed, wind direction, precipitation, temperature and relative humidity. Standard errors in parentheses are two-way clustered at county and
month level. ***p < 0.01, **p < 0.05, *p < 0.1.
Table A8
Effects of Straw Burning and PM2.5 on Death with Nonlinear Weather.

VARIABLES (1) (2) (3)
All-Cause
 Cardiorespiratory
 Non-Cardiorespiratory
Panel A: Reduced Form

Straw Burning (per 10 points)
 1.38*

(0.79)

1.69**
(0.83)
�0.81
(0.99)
(continued on next column)



G. He et al. Journal of Development Economics 145 (2020) 102468
Table A8 (continued )
VARIABLES
 (1)
18
(2)
 (3)
All-Cause
 Cardiorespiratory
 Non-Cardiorespiratory
Panel B: IV and OLS

IV: PM2.5 (per 10 μg/m3)
 2.89**

(1.46)

3.54**
(1.54)
�1.69
(2.19)
OLS: PM2.5 (per 10 μg/m3)
 0.29
(0.25)
0.45
(0.39)
�0.26
(0.47)
Observations
 1538
 1538
 1538

# Counties
 209
 209
 209
Notes: Each cell represents a separate regression. Panel A reports the reduced-form estimates of straw burning’s effects on the log
number of deaths. Panel B presents the IV and OLS estimates of effects of PM2.5 on logged number of deaths. County, month, year
fixed effects, and weather conditions (wind speed, wind direction, temperature, precipitation, relative humidity) are controlled.
Temperature is nonlinearly controlled in 5 bins: (,15), [15,20), [20,25), [25,30), and [30). Standard errors in parentheses are two-
way clustered at county and month level. ***p < 0.01, **p < 0.05, *p < 0.1.
Table A9
Lagged Effects of Straw Burning and PM2.5 on Log # of Death.

VARIABLES (1) (2) (3)
All-Cause
 Cardiorespiratory
 Non-Cardiorespiratory
Panel A: Reduced Form

Straw Burning (per 10 points)
 1.72*

(0.93)

1.96**
(0.96)
�0.65
(1.00)
L1. Burning
 0.77
(0.76)
0.68
(0.81)
�0.33
(1.08)
Panel B: IV and OLS

IV: PM2.5 (per 10 μg/m3)
 2.90***

(1.10)

3.46***
(1.22)
�1.07
(2.04)
OLS: PM2.5 (per 10 μg/m3)
 0.32
(0.23)
0.47
(0.38)
�0.25
(0.47)
Notes: Each cell represents a separate regression. Panel A reports the reduced-form estimates of concurrent and previous straw
burning’s effects on deaths. Panel B presents the IV and OLS estimates of effects of PM2.5 on deaths. County, month, year fixed effects
and weather conditions (wind speed, wind direction, temperature, precipitation, relative humidity) are controlled nonlinearly in
quadratic terms. Standard errors in parentheses are two-way clustered at county and month level. ***p < 0.01, **p < 0.05, *p < 0.1.
Table A10
IV Estimates of Effects of PM2.5 on Death with Varying Distance (%).

VARIABLES (1) (2) (3)
All-Cause
 Cardiorespiratory
 Non-Cardiorespiratory
(per 10 μg/m3)

35 km
 2.78

(2.00)

4.10**
(1.70)
�3.11
(3.13)
40 km
 2.76
(1.92)
3.92**
(1.69)
�2.83
(2.84)
45 km
 3.11**
(1.48)
4.03***
(1.45)
�2.22
(2.40)
50 km
 3.25**
(1.43)
3.80**
(1.48)
�1.21
(2.10)
60 km
 3.22***
(1.02)
3.63***
(1.14)
�0.79
(1.72)
70 km
 3.32***
(0.97)
3.70***
(1.09)
�0.76
(1.70)
80 km
 3.23***
(1.09)
3.68***
(1.22)
�0.64
(1.40)
90 km
 3.25***
(1.22)
3.53***
(1.26)
�0.10
(1.23)
100 km
 3.26**
(1.27)
3.47***
(1.28)
0.29
(1.26)
Observations
 1538
 1538
 1538

# Counties
 209
 209
 209
Notes: Each cell represents a separate regression. Straw fires and PM2.5 within 35 km–100 km from a county center
are explored in each row, respectively. Columns (1)–(3) report the effects on all-cause mortality, cardiorespiratory
mortality and non-cardiorespiratory mortality, respectively. County, month, year fixed effects and weather condi-
tions (wind speed, wind direction, temperature, precipitation, relative humidity) are controlled. Standard errors in
parentheses are two-way clustered at county and month level. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table A11
Effects of Straw Burning and PM2.5 on Death with Administrative Center.

VARIABLES (1) (2) (3)
19
All-Cause
 Cardiorespiratory
 Non-Cardiorespiratory
Panel A: Reduced Form

Straw Burning (per 10 points)
 1.14**

(0.53)

1.37**
(0.56)
�1.00
(0.88)
Panel B: IV and OLS

IV: PM2.5 (per 10 μg/m3)
 2.57***

(0.94)

3.09***
(1.00)
�2.24
(2.16)
OLS: PM2.5 (per 10 μg/m3)
 0.46**
(0.19)
0.69**
(0.32)
�0.22
(0.42)
Observations
 1868
 1868
 1868

# Counties
 255
 255
 255
Notes: Each cell represents a separate regression. Panel A reports the reduced-form estimates of upwind burning’s effects on the log
number of deaths. Panel B presents the IV and OLS estimates of effects of PM2.5 on deaths. County, month, year fixed effects and
weather conditions (wind speed, temperature, precipitation, relative humidity) are controlled. Standard errors in parentheses are
two-way clustered at county and month level. ***p < 0.01, **p < 0.05, *p < 0.1.
Table A12
Examining Pre-trends in Straw Burning and PM2.5.

VARIABLES Straw Burning (points) PM2.5 (μg/m3)
(1)
 (2)
2017
 �136.3**
(49.3)
�3.94***
(1.07)
2016
 �190.8**
(60.4)
�5.62***
(1.07)
2014
 �36.4
(119.2)
�0.51
(1.50)
2013
 86.8
(164.5)
2.51
(2.21)
2012
 66.0
(187.6)
–

–

Observations
 186
 155

R-squared
 0.71
 0.93

# Provinces
 31
 31

Province FE
 Y
 Y

Year FE
 Y
 Y

Weather
 Y
 Y
Notes: Each column represents a separate regression using an event-study approach
(Jacobson et al., 1993). 2015 before the straw recycling subsidy program is the base
year. Standard errors in parentheses are clustered by province and year. ***p < 0.01,
**p < 0.05, *p < 0.1.
Table A13
Agricultural Production and Placebo Tests.

VARIABLES (1) (2) (3) (4) (5) (6)
PM2.5 (μg/m3)
 PM10 (μg/m3)
 SO2 (ppb)
 NO2 (ppb)
 Yield (kg/ha)
 Grain Output (10k tons)
Subsidy
 �3.02
(1.89)
�3.05
(4.01)
0.03
(1.29)
1.07
(0.99)
�42.22
(122.70)
40.29
(28.57)
Data
 Non-Burning Season
 Yearly
 Yearly

Observations
 155
 186
 186
 186
 186
 186

R-squared
 0.934
 0.906
 0.860
 0.830
 0.978
 0.999

# Provinces
 31
 31
 31
 31
 31
 31

Province FE
 Y
 Y
 Y
 Y
 Y
 Y

Year FE
 Y
 Y
 Y
 Y
 Y
 Y

Weather
 Y
 Y
 Y
 Y
 Y
 Y
Notes: Each column represents a separate DiD regression. Columns (1)–(4) report the effects of the subsidy on air pollutants during non-burning seasons. Columns (5)–(6)
list the effect of straw recycling subsidy on agricultural yield and total grain output. Province and year fixed effects and weather conditions (wind speed, wind direction,
temperature, precipitation, relative humidity) are controlled. Standard errors in parentheses are clustered by province. ***p < 0.01, **p < 0.05, *p < 0.1.
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